

OptiWITS: a smart solution for wind farm layout design

G. Coppin¹, P. Bozonnet¹, D.Rahon¹, P. Malisani², T. Bartement² ¹GreenWITS, ²IFP Energies Nouvelles, contact: Gisele.coppin@greenwits.com

More details available online

Concept

OptiWITS is a digital solution to quickly get the best wind farm layouts based on advanced algorithms optimizing relevant KPIs.

Use Case

Based on Borssele wind farm and on IEA Wind study [1].

- Turbine: IEA 10 MW[1]
- Wind rose from [2]
- Baseline layout: based on Borssele wind farm

Optimization constraints

Optimization constraints:

- 77 wind turbines
- Boundaries from [1]
- Minimum interdistance: 2 diameters
- Alignment constraints

Optimization

Wake model and optimization tuning to efficiently get the best layout.

Wake model tuning

The wake model is tuned to trade-off get best between accuracy of the AEP and calculation time.

Tuned parameters:

- Discretization of wind direction and speed bins
- Rotor discretization
- Influence zone of the wake

Optimization tuning Optimization progression Optimization iteration 1 iteration = all the turbines are

The optimization parameters are tuned to minimize the time while calculation ensuring a large exploration of space.

Tuned parameters:

- Initial exploration distance
- Decay rate for this distance
- **Exploration grid** Discretization

Results

Optimization is run without and with alignment constraints.

Non-aligned optimization

Optimization performed for 2 levels of wake model accuracy:

- Simplified wake model
 - \rightarrow Run time: 10 s \rightarrow AEP Gains*: +2 %
- Advanced wake models
- \rightarrow Run time: 28 h \rightarrow AEP Gains*: +2.4 % *Computed with advanced wake models

Aligned optimization

2-step algorithm:

- 1. Definition of grid parameters (grid orientation angles, grid spacing)
- 2. The 77 turbines are optimally located among the grid intersections

Optimization run with simplified wake model only (calculation time challenge) →Run time: 8 min → AEP Gains*: +1.6 %

→ Optimizer converges on a fine grid, allowing a lot of possible turbine locations

Conclusion

successively moved in an exploration grid

Non-aligned optimization is fully operational: wake model choice allows trade-off between computation time and optimization performance. Aligned optimization is operational for simple wake model.

References:

- 1. Thomas, J. J., et al. A comparison of eight optimization methods applied to a wind farm layout optimization problem, Wind Energ. Sci., 8, 865–891, https://doi.org/10.5194/wes-8-865-2023, 2023.
- 2. Site studies wind farm zone Borssele, Metocean study for the Borssele Wind Farm Zone Site III, Netherlands Entreprise Agency, 2015.

Perspectives

- Solution currently available as a service → software solution under development
- On-going work to enable aligned optimization with advanced wake models